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Abstract

Navigation is fully autonomous when a vehicle can plan
its path and execute it without human intervention. This re-
search aims at testing the impact of introducing an AI-based
approach for visual navigation in underwater environments.
To achieve this, several challenges have to be overtaken.
First, an annotated dataset with pairs of input images and
segmentation grounds truths is essential for training a state-
of-the-art AI model. Second, choosing a model adequate
for image segmentation and training it. Finally, evaluate
if this methodology improves the accuracy of visual navi-
gation and scene reconstruction algorithms, such as online
and offline SLAM. This approach achieved state-of-the-art
results on the segmentation task, with 93% pixel accuracy
and 85% IoU. Using segmentation masks also improves the
performance of offline and online SLAM algorithms.

1. Introduction

Autonomous underwater vehicles (AUVs) can revolu-
tionize deep sea exploration, by changing the way data is
acquired for further mapping and monitoring. Space explo-
ration is another field that could benefit from AUVs, since
one of the goals of several international organizations is to
explore parts of our solar system potentially capable of host-
ing life, as is the case of ocean worlds, such as Enceladus,
Europa or Titan. These ocean worlds could have conditions
similar to those on the deep parts of our oceans, thus devel-
oping vehicles capable of operating autonomously in our
seas could be a first step.

Developing fully autonomous systems is crucial to
achieving the above goals. Tim Shank, a researcher from
WHOI, explains his vision in a conference 1, where a series
of vehicles equipped with sensors are capable of commu-
nicating with each other and with local base stations about

1https://www.youtube.com/watch?v=BGD_oyPGT6w&
ab_channel=oceanexplorergov

positioning, sensing and samples they are collecting. Russel
Smith, an engineer from NASA’s Jet Propulsion Lab (JPL),
spoke in the same conference about the importance of vehi-
cles capable of gathering visual information and use it for
localization and mapping, enabling fully autonomous navi-
gation.

Developing a visual based navigation solution for under-
water vehicles operating in deep ocean comes with several
challenges. Since the feature detection of this solution is
based in deep learning, which requires annotated datasets
for training, finding or developing a good dataset was the
first task. The second challenge would be training a neu-
ral network suited for segmentation, in order tohave a ro-
bust feature detection tool. At last, assess if the proposed
methodology helps improve the performance of SLAM al-
gorithms.

To tackle the first problem, a dataset with pairs of input
images and labeled segmentation ground truth needs to be
created.

To address the segmentation problem, we want to use
state of the art technology, robust enough to endure the dif-
ficult navigation conditions of a deep underwater environ-
ment. One of the possibilities is to resort to neural networks,
such as Fully Convolutional Network.

To assess if the developed network contributes to SLAM
algorithms, the outputs were tested, coupled with the input
images, on both offline and online SLAM algorithms. Of-
fline SLAM is used in post-exploration situations to recon-
struct and map the visited sites. Online SLAM is applied
for real-time autonomous navigation. Thus, evaluating on
both tools is crucial in the scope of deep sea - and future
ocean planets - exploration.

The main contributions of this work are:

• Development of an annotated dataset of deep under-
water environments rich in hydrothermal vents and sea
bed footage;

• Training and testing a state of the art AI-based seman-
tic segmentation algorithm with the created dataset;

1

https://www.youtube.com/watch?v=BGD_oyPGT6w&ab_channel=oceanexplorergov
https://www.youtube.com/watch?v=BGD_oyPGT6w&ab_channel=oceanexplorergov


• Evaluate the contribution of introducing AI in feature
detection to improve the performance of navigation
and reconstruction algorithms, such as SLAM.

2. Background
Semantic segmentation is a very important technique in

the field of computer vision, being used for problems like
object detection and classification, development of self driv-
ing vehicles or virtual reality. In the context of this project,
semantic segmentation is the approach that makes the most
sense, since we want to split images in regions containing
obstacles, like sea bed, and background, such as areas con-
taining only water.

2.1. Fully Convolutional Networks

Fully convolutional networks [4] are neural network ar-
chitectures widely used for semantic segmentation tasks.

Figure 1: Fully convolutional network. Source: [8]

Today, a good amount of the best performing state-of-
the-art semantic segmentation methods relly on fully convo-
lutional networks. The FCNs are able to yield dense pixel-
wise predictions on arbitrary sized inputs and can be trained
end-to-end. Another advantage is that these networks are
built on top of CNNs which are able to produce rich feature
representations. These CNNs can be pretrained models on
general purpose datasets, further reducing the time required
to train the network.

These networks are denominated ’fully convolutional’
because they do not have fully connected layers like CNNs
and most artificial neural network architectures. Fully con-
nected layers were removed for two reasons: first, they en-
tail a single input size, not allowing the model to perform
on arbitrary sized inputs; second, they only yield a single
feature vector for the entire image. To replace the fully
connected layer, fully convolutional layers were introduced,
which are able to deal with the arbitrary size input.

2.1.1 From classifier to segmentation

The work of Long et. al [4] takes networks used for im-
age classification problems, like GoogleNet, AlexNet or
VGG16. In all the previous networks, the classifier is dis-
carded and all the fully connected layers are converted to
convolutions with 1× 1 kernels. Convolutional layers with

size 1 kernels are similar to fully connected layers but are
capable of dealing with arbitrary size inputs. In a normal
CNN, with fully connected layers, at the end of the classi-
fier, the output would be a single predicted label. But since
the fully connected layers are replaced by convolutional lay-
ers, what the network outputs is a feature map where fea-
tures are assigned to a certain class.

The output of the fully convolutional layers has lower
resolution than the input image, due to the pooling layers
used to downsample. The method used by [4] uses trans-
posed convolutions, or deconvolutions, to upsample the pre-
dictions. By doing this, the FCN’s output has the same res-
olution as the original image.

From training and validating this architecture on the
PASCAL dataset, Long et al [4] found the FCN with
VGG16 was the one that yielded the best results.

2.1.2 Convolution

At the output of the convolutional layer new images, called
feature maps, are generated. The feature map is a version
of the original image where unique features are emphasised.
This layer also has an important difference compared to lay-
ers in other neural networks, since weights are not present
in connections between neurons, instead there are filters
(kernels) responsible for the convolution where weights are
stored.

Since the convolution operation occurs in a 2D plane,
it is better explained graphically. Therefore, figure 2 is a
good representation of the operation. First, we perform the
dot product between the kernel and a submatrix of the input
matrix, the value is stored in a new entrance of a new matrix
(feature map). Then we do the same for the next submatrix
of the input image. It should be noted that kernels usually
come in the form of 3× 3 or 5× 5 matrices and the weights
are not selected by the network designer, instead they are
usually randomly initialized and iteratively updated through
the training process.

Figure 2: Graphic representation of a convolution. The
kernel slides through the input image, performing dot

products between the kernel values and a submatrix of the
input matrix. Source: [1]
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2.1.3 Deconvolution

Deconvolution, or transposed convolution as can be seen in
some literature, is a mathematical operation that reverses
the effect of a convolution. The input feature map is up-
sampled to a desired output feature map. In the case of a
FCN, it is usually upsampled until the dimensions of the
input image are reached.

Figure 3: Deconvolution process schematic.
Deconvolutions are used to upsample the input feature map
to a desired output feature map using learnable parameters.

Source: [6]

Figure 3 portrays the deconvolution process. An input
matrix and a kernel both of size 2× 2 are considered for the
example. The first step is to take every element of the kernel
and multiply for every element of the input image, creating
the 4 matrices displayed in the image. Next, all the matrices
are added giving place to a 3 × 3 matrix, which has larger
dimensions than the input.

3. Simultaneous Localization and Mapping
(SLAM)

Simultaneous Localization and Mapping (SLAM) is a
computational problem of reconstructing and updating a ve-
hicle’s trajectory by mapping while, simultaneously, know-
ing the location of the vehicle in the same map. The SLAM
problem is widely regarded as one of the major problems
in the field of fully autonomous vehicles [10] and although
the field has seen major progresses, it is still a great chal-
lenge, particularly when a vehicle is intended to navigate
through dynamic large scale environments, as is the case
of deep ocean or space exploration. SLAM algorithms are
commonly used in self-driving cars, autonomous underwa-
ter vehicles, unmanned air vehicles and robotics.

3.1. Definition of the SLAM Problem

The SLAM problem can be described as a robot, capable
of sensing its surroundings, roaming a previously unknown
environment with known starting coordinates. The way the
robot moves is not certain, which increases the difficulty
of determining its global coordinates. SLAM algorithms
should deal with the task of mapping the environment while
simultaneously knowing the robot’s position in this map.

The trajectory followed by the robot is given by

XT = {x0, x1, x2, ..., xT } (1)

where each xi is a known location of the robot and T de-
notes a terminal time period.

Odometry is a robotics technique where data from mo-
tion sensors is used to estimate changes in position over
time. With ut being the odometry that describes the changes
in position between two intervals, the sequence

UT = {u0, u1, u2, ...., uT } (2)

can describe a series of steps in the robot’s motion. This
data can be retrieved from controls given to the vehicle’s
motor, sensors or cameras. If the measurements of UT were
noise free, then it would be sufficient to retrieve the trajec-
tory XT .

Let m denote the ground-truth map of the environment.
The measurements from the robot’s sensor provides infor-
mation that relates the map m with the robot’s position xt.
If the robot measures exactly once in every time instant, the
set of measurements is described by

ZT = {z0, z1, z2, ..., zT }. (3)

Now the SLAM problem can be resumed to generating
a map m of the location and recover the robot’s trajectory
XT from the sensor’s measurements ZT and the odometry
dataUT . Current literature distinguishes between two major
SLAM problems: online SLAM and offline SLAM.

Online SLAM focuses on recovering the current robot
position xt and it can be mathematically described as

p(xt,m|ZT , UT ). (4)

Offline SLAM, sometimes called full SLAM, seeks to
determine the full path of the vehicle, as well as the map,
after observation. Mathematically the problem is defined as

p(XT ,m|ZT , UT ).

Both SLAM problems are very important. Offline
SLAM can be used for generating a map and recover tex-
tures and structures after exploring a certain area with a
robot, while online SLAM is used for real time map and po-
sition estimation. In terms of algorithms, the two differ in
one major point: for online SLAM, algorithms must be able
to process one data item at a time for real time accuracy; for
offline SLAM, since the algorithm is ran post-exploration
with the acquired data, the methods usually work in batches,
being able to process all the data at the same time.

Furthermore, to tackle both problems, two more mod-
els should be considered. One that sets a relation between
odometry measurements and the robot’s positions

p(xt|xt−1, ut), (5)

and another that relates the sensor’s measurments of the sur-
roundings with the map and the robot’s location

p(zt|xt,m). (6)
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In the last we have the problem of not knowing neither
the robot’s position xt nor the environment’s map m. The
Bayes rule allows us to transform the mathematics of equa-
tion 6 into an equation where we can retrieve probability
distributions over the map and position.

p(zt|xt,m) =
p(xt,m|zt) · p(zt)

p(xt,m)
. (7)

3.2. ORB-SLAM

ORB-SLAM [7] is a real time feature-based monocular
visual SLAM algorithm. Visual SLAM aims at reconstruct-
ing the camera’s trajectory while mapping the environment.

ORB-SLAM uses bundle adjustment (BA) to perform its
optimization tasks. BA is a non-linear least-squares opti-
mization problem that amounts to refining a series of initial
camera and trajectory parameters to estimate the set of val-
ues that describes the locations of observed features more
accurately.

In terms of feature detection and choice, ORB-SLAM
uses the ORB feature detector, which allows for fast com-
putation while maintaining accurate results. One of the core
ideas of ORB-SLAM is that the same features are used for
very different tasks, such as mapping, tracking, place recog-
nition and loop closing, contributing to overall efficiency of
the algorithm.

This SLAM algorithm exploits the use of three threads
running simultaneously in parallel: one for tracking, an-
other for local mapping and the last for loop closing. The
tracking is responsible for estimating the camera position
and infer when a new frame is a key-frame. The local map-
ping thread takes the new keyframes and performs bundle
adjustment to attain a reconstruction of the area surround-
ing the camera. Also, local mapping searches for corre-
spondence between features in the new keyframe among the
other connected keyframes. The last thread, loop closing,
searches for loops everytime a new keyframe is inserted. To
ensure consistency, pose graph optimization is performed.
This thread is also responsible for finding and fusing dupli-
cated points to avoid redundancy.

ORB-SLAM uses covisibility graphs to represent
keyframes. In these graphs each keyframe is a node and
edges connecting different keyframes mean there is shared
observation of map points. Each edge has weight that is
equal to number of shared map points.

Whenever a loop is detected and closed, it shall be cor-
rected using pose graph optimization. As complexity in-
creases with the number of keyframes, the covisibility graph
can become very dense, therefore the pose graph optimiza-
tion is performed on a smaller Essential graph that keeps
all the keyframes but uses less edges, which keeps accu-
rate results at lower complexity levels. A graphical repre-
sentation of a scene reconstruction with the observed map

points, keyframes and the generated covisibility and essen-
tial graphs can be seen in figure 4.

(a) (b) (c)

Figure 4: (a) Keyframes (blue), map points (red and
black), current camera (green); (b) covisibility graph, with

all the edges connecting keyframes; (c) Essential graph,
only the edges with high weight are present and a loop

closing edge in red. Source:[7]

4. Implementation
4.1. Dataset

The process of gathering visual data for the dataset con-
sisted of three steps: first, going through all the videos and
selecting periods with images suited for the task; second,
sampling these video periods; last, from all the images col-
lected from the sampling, clear the ones that were not good
candidates, like images with too much noise or full of bub-
bles and sand.

The methodology followed to create the segmentation
ground truths, after having all the inputs gathered, consists
of three stages: applying contrast enhancement; produce an
estimate segmentation mask, using edge detection tools; ap-
plying the necessary corrections, to yield ground truths as
accurate as possible (Fig. 5).

4.2. Contrast Enhancement

When light travels in turbid mediums, like water or at-
mosphere, it suffers from absorption and scattering, which
result in degraded images, with low contrast and poor colour
quality. This scattering is not homogeneous across the
scene, since this effect depends on the distance of scene
points to the camera. Furthermore, in the conditions that
this footage was produced, where natural lighting is non-
existent, properly illuminating the entire captured scene is
impossible, resulting in dark areas that can compromise the
data analysis.

The Single Scattering Atmospheric Model (SSAM),
models a hazy image, I(x), as

I(x) = J(x)t(x) +A(1− t(x)), (8)

where x is a coordinate vector of a given pixel, J is the haze-
less image, A is the atmospheric light and t is the light that
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Figure 5: Dataset creation flow chart.

reaches the camera without scattering. If we calculate t and
A, given the input I we can recover J and have the enhanced
haze free image.

The first thing to be done is calculate the dark channel.
The dark channel is formed by the pixels with the lowest
intensity in one of the three RGB channels, in a patch of
given size. The dark channel, Jdark, is given by

Jdark(x) = min
y∈Ω

( min
c∈r,g,b

Jc(y)) (9)

where Ω is a patch centered at x.
Considering what we first introduced about the DCP, we

can say that if J is a haze-free image, with recovered con-
trasts, then

JDark → 0. (10)

The atmospheric light A, or the scene light, is calculated
by choosing the 0.1% brightest pixels of the dark channel.
This corresponds to the area with the most haze and lower
contrasts, as the scattering is highly dependent on the dis-
tance travelled by light. The same pixels are retrieved from
the original image I. Then, the mean of this group of pixels
is calculated for each RGB channel.

Another necessary step for the improvement of image
quality is to determine the transmission map, from the hazy
image equation (eq. 8), which can be written as

t(x) = 1− w min
y∈Ω(x)

(
min
c

Ic(y)

Ac

)
(11)

where Ac is the atmospheric light in each color channel,
considering pixel intensities ranging from 0 to 1. Our un-
derstanding of human vision considers that haze allows the

perception of distance and depth, an occurrence denomi-
nated aerial perspective.

If the transmission map was to be used just like it is
yielded from equation 11, we would obtain an output image
with undesired artifacts (halos or pixelated blocks) around
objects present in the scene. In order to prevent this, the
transmission map must be refined (filtered). The approach
proposed by Tunai et al. [5] consists of using a guided fil-
ter. According to which, a filtered image q can be recovered
from a guidance image I and an input image p using

qi = akIi + bk,∀i ∈ wk (12)

with i being the pixel’s index and and k the index of a local
square window w of radius r. The values of ak and bk can
be determined using:

ak =

1
|w|
∑

i∈wk
Iipi − µkpk

σ2
k + ε

(13)

bk = pk − akµk (14)

where µk and σ2
k are the mean and the covariance of I in

wk, |w| is the number of pixels in wk and pk is the mean
of p in wk . The equations above were provided by He et.
al at [2].

After determining the scene light A and the filtered
transmission map t(x) we have the necessary information
to recover the the enhanced image J(x), from equation 8
comes

J(x) =
I(x)−A

max(t(x), t0)
+A (15)

where t0 is a constant introduced to limit the value of the
denominator. For certain denominator values, the recovered
image can be prone to noise in the most hazy regions, so it
is good practice to introduce a constant (t0) and limit the
denominator value.

The parameter values chosen for this implementation
were w = 0.5 (Eq. 11), t0 = 0.6 (eq. 15), using patches of
dimensions 15× 15.

4.3. Operator Selection

Annotating an entire dataset by hand would be extremely
time consuming and prone to human error. Thus, develop-
ing a methodology to help create the dataset is advantageous
in what concerns efficiency and accuracy. Analysing the
dataset, a characteristic becomes evident: most of the im-
ages are very rich in edges and corners, due to the presence
of shellfish and algae on the seabed. Therefore, edge detec-
tion operators were chosen to extract those features from the
images. Besides the edge detection approach, the k-means
clustering algorithm for segmentation was also tested.
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4.3.1 Sobel

Since the method that yielded the best results, even com-
pared with K-means, was the Sobel approach, this docu-
ment only covers this one. For this method, there are fil-
ters (kernel) that are convoluted accross the image. These
kernels are an estimate of the derivative of pixel intensity,
estimating the direction of the highest variation of pixel in-
tensity (from bright to dark), which provides insights on
how the the pixel intensities changes in each given point,
and allows intensity gradient estimation. In regions where
intensity variation is significant, we can say that it is a sep-
aration between objects and, thus, we are in the presence of
an edge. All these filters perform 2-D spatial gradient mea-
surement, which means that a gradient is estimated across
the horizontal (Gx) and vertical (Gy) dimensions and are
then used to calculate the absolute gradient magnitude

G =
√
G2

x +G2
y. (16)

In theory, Sobel operator typically uses 3 × 3 kernels,
however for improved segmentation results 5×5 kernels are
also used. These kernels usually take the following values

Gx =


+2 +2 +4 +2 +2
+1 +1 +2 +1 +1
0 0 0 0 0
−1 −1 −2 −1 −1
−2 −2 −4 −2 −2

 (17)

Gy =


+2 +1 0 −1 −2
+2 +1 0 −1 −2
+4 +2 0 −2 −4
+2 +1 0 −1 −2
+2 +1 0 −1 −2

 . (18)

To prevent the detection of edges that appear in the image
due to noise, the images must be filtered. The median filter
from OpenCV 2 was used with kernels of size ksize = 5.
After filtering, the edge maps are retrieved by convoluting
the kernels across the image. The edges alone are not a
segmentation mask, because pixels are not labeled individ-
ually, instead only the pixels that are part of edges are la-
beled. However, if we perform morphological operations,
such as closing and dilation 3, we are able to create a mask
that, if overlayed in the original image, covers the entire ob-
ject instead of just the edges. To remove unwanted areas,
morphological transformations such as opening and erod-
ing can be implemented. Furthermore, a function was de-
veloped to erase areas that are bellow a certain size thresh-
old, since most objects that would be segmented are large

2https : / / docs . opencv . org / 3 . 4 /
d4 / d86 / group _ _imgproc _ _filter . html #
ga564869aa33e58769b4469101aac458f9

3https : / / docs . opencv . org / master / d9 / d61 /
tutorial_py_morphological_ops.html

and unwanted areas of dust and other particles are small in
comparison.

4.4. Fully Convolutional Network

The chosen framework for the implementation of the
deep learning solution for semantic segmentation was Py-
torch, developed by Facebook AI Research Lab and is see-
ing its usage increase at good pace. Comparing to other
frameworks, such as Tensorflow or Keras, Pytorch is very
flexible, offers good debugging capabilities and runs faster,
meaning shorter training duration.

4.4.1 Data Loading and Preprocessing

The first step of the data loading process consists of crop-
ping the images. The implemented model only accepts in-
put images whose dimensions are multiples of 16. Since we
have 1440 pixels of width, which already is a multiple of
16, the only dimension that should be cropped is the height.
The original image’s height is 1080 and it was converted to
1056.

Also, images should be converted from RGB format to
BGR and pixel intensities for the three channels are normal-
ized, so that they stay in the range [−1; 1] instead of [0; 255].

4.4.2 Architecture

The research by Long et al. [4] evaluates the performance
of three different fully convolutional networks (FCNs), the
FCN32s, FCN16s and FCN8s. The one that achieved the
best results in [4] was the FCN8s, since it combines the
output of deeper layers with outputs of shallower ones, pre-
venting the loss of spatial information that is crucial to cap-
ture all the details. This operation of combining results of
different layers will be further explained ahead. The imple-

Figure 6: Comparison between the results achieved by the
FCN32s, FCN16s and FCN8s. Source:[4]

mentation of the FCN8s can be split in two stages. First,
a transfer learning approach was used where a pretrained
VGG16 network imported from Pytorch is integrated for the
convolutional part of the network. The traditional VGG16
consists of 5 convolutional and pooling layers followed by
fully connected layers. However, since we want the net-
work to accept inputs of arbitrary size, the fully connected
layers are replaced with another two convolutional layers,
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performing the convolutions with kernels of size 1×1. Sec-
ond, the transpose convolution (deconvolution) layers are
added at the output of the last convolutional layer, to up-
sample results to the size of the input image, providing an
image where each pixel is assigned to a class.

This architecture yields good results because it combines
results from different layers, making local pixel predictions
while respecting global structure. The outputs of the 3rd,
4th and 5th convolutional layers from VGG16 are combined
with results from the transpose convolution layers(figure 7).
When we go deeper in the network, we lose spatial infor-
mation, due to all the convolution and pooling layers. So,
if we combine the output of deeper layers with the output
of shallower ones, we are adding location information, it
is expected that the quality of the results increases, due to
increased detail. This combination is an elementwise sum.
The output of the 5th convolutional layer is upsampled by
a factor of 2 and summed with the output of the 4th con-
voluional layer. The output of this operation is again up-
sampled by a factor of 2 and summed with the output of
the 3rd convolutional layer, which is later upsampled by a
factor of 8 to yield the final result.

Figure 7: Graphic representation of the combination of
results from different layers. This process is used to

improve the quality of results, by adding feature maps from
deeper layers. Source: [3]

The chosen activation function used at the end of each
layer was the rectified linear unit (ReLU), as it is the most
commonly used for CNNs and FCNs. The selected loss
function was binary cross entropy (BCE) and the optimiza-
tion process is done through stochastic gradient descent, us-
ing the RMSProp optimization algorithm.

4.4.3 Network Parameters

Regarding the parameters chosen for the training phase, for
computational capacity reasons the batch size was set to 1,
as images have a very large number of pixels and consume
a great ammount of memory, even training on GPUs using
the CUDA toobox from Nvidia. Learning rate was set to
1 ·10−5, weight decay 1 ·10−5, step size 50 and momentum
0. The training dataset was iterated across 130 epochs.

To arrive to this configuration of parameters several tests
were executed, by training the model with different param-
eters. The values chosen for the first training session were
the ones provided by the paper of Long et. al [4] and differ-
ent sets of parameters were experimented from there.

4.4.4 Dataset Management

The dataset consists of 1198 images, of which 798 were
used for training and 150 for validation throughout each
training epoch. After training, the model was tested with
a dataset of 150 images, with examples that were not used
in the training phase. Furthermore, since the model was
trained several times with different parameters, a dataset
with 100 unique examples from a different underwater site
was stored to evaluate the model performance after the con-
figuration of training parameters was settled. The goal of
the last is to assess how robust the model is. No data aug-
mentation was performed, since the work of [4] states that
performing such task for does not perceptibly improve net-
work performance and increases the time required to train.

Figure 8: Schematic of the dataset management. A dataset
with images from a different underwater site was stored to
evaluate the model after all the network hyperparameters

were settled.

4.4.5 Evaluation Metrics

To evaluate the network’s performance during training and
testing sessions the selected performance metrics were
mean pixel accuracy and intersections over union, as these
are the ones considered most relevant in the work of Long
et al. [4].

The mean pixel accuracy (MPA) can be defined as

MPA =
CP

TP
(19)
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where CP is the number of correct pixel classifications and
TP is the total number of predictions. The number of cor-
rect pixels is a sum of the number of true positives and true
negatives.

The intersections over union (IoU), sometimes also
called Jaccard index, quantifies the overlap between the
ground truth mask and our prediction mask. In other words,
it measures the number of pixels common between the tar-
get and the prediction and divides by the total number of
pixels present on both masks. [9]

IoU =
target ∩ prediction
target ∪ prediction

(20)

The intersections over union are determined for each class
separately. Then the average of the IoUs is determined to
provide a global metric of the segmentation predictions.

5. Results
5.1. Fully Convolutional Network

This section’s objective is to evaluate the results at-
tained by the Fully Convolutional Network. The model was
trained a total of 8 times, with different configurations of
hyperparameters and correction of the dataset between each
training phase. After determining the configuration of pa-
rameters that achieves the most accurate results, the model
is tested on a set of images, collected from a different site.
The results of these last test are also exposed in this section.

5.1.1 Training an FCN with Different Parameters

These interim tests are the set of tests that aim at reach-
ing the optimal configuration of network training parame-
ters for this problem. All the tests were performed on the
same dataset, as seen on figure 9. After each epoch of train-
ing, a validation set is ran through the network to evaluate
performance evolution throughout the epochs of training.
For each training phase, the validation dataset is always a
random subset of 150 images from the overall training set.

Figure 9: Dataset management chart. The red box denotes
the part of the dataset used for testing throughout the tests

exposed in this section. The training and validation sets are
the same throughout all tests.

Throughout this testing phase, the network parameters,
like the number of epochs, learning rate or weight decay

have been tuned to evaluate the impact of changing these
values on the model’s performance. In total, 7 tests were
conducted and there was no expressive changes in perfor-
mance across them. The chosen configuration of network
parameters for the final test, to be performed with a differ-
ent dataset, was the one used on test number 7, with 130
epochs, batch size 1, learning rate 5 × 10−5, weight decay
1 × 10−5, step size 50, gamma 0.5 and momentum 0. This
configuration was selected since the accuracy and IoU evo-
lution performed well on the chosen metrics and presented
good stability at the end of the training phase, indicating the
algorithm had converged towards an optimal solution (fig-
ure 10). The achieved results on the validation and test sets
are present in tables 1 and 2.

(a) Mean IoU evolution for
7th test.

(b) Mean pixel accuracy evolu-
tion for 7th test.

Figure 10: Evolution of the performance metrics, IoU and
pixel accuracy, across epochs for the 7th test.

Pixel Accuracy Mean IU
96.70% 92.53%

Table 1: Results achieved on the validation set.

Pixel Accuracy Mean IU
97.9% 94.61%

Table 2: Results achieved on the test set.

5.1.2 Final Test

For the last test, the model used was the one reached when
training for test number 7. The dataset used for this test
was significantly different from the one used for training,
since the images were collected in a different underwater
cite, with different conditions. The goal was to evaluate the
model’s capacity to generalize when the data being used is
different.

Looking at table 3, the network achieved very accurate
results, with nearly 93% mean pixel accuracy and 85.21%
IoU. The Sobel-based method achieved 91.5% mean pixel
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Figure 11: Dataset management chart. The red box denotes
the part of the dataset used for the test explained in this

section.

Pixel Accuracy Mean IU
92.80% 85.21%

Table 3: Results achieved on the test set highlighted in fig-
ure 11

accuracy over the same samples. Although the FCN’s accu-
racy decreased, comparing to previous tests, we can affirm
that it is still a very accurate result.

Another interesting metric, the FCN can yield segmen-
tation predictions in around 0.01 seconds, which translates
to 100 Hz. In detail, this approach is able to generate 100
segmentation masks per second. The video footage used
to create the dataset for this thesis had a frame rate of 25
frames per second. Meaning that our approach is 4 times
faster than the frame rate of the camera.

5.2. Simultaneous Localization and Mapping

To evaluate the impact of the proposed methodology on
real time navigation algorithms we have ran offline SLAM
and online SLAM tools on sequences of images with no
masks and with masks generated by the trained FCN model.

5.2.1 Offline SLAM

Agisoft Metashape Standard (Version 1.7.2)(Software) is a
photogrammetry software, used for 3-D reconstruction of
scenes. To evaluate the impact of semantic segmentation on
offline SLAM, the program ran a sequence of 46 images.
Figure 12 displays the software’s output with and without
using masks. Although there is no huge difference between
the two cases, we can see that when no masks are used (12
(b)) the software builds the texture for a dust cloud that goes
in front of the camera. The dust cloud has a brownish color.
Furthermore, in the case without masks, the program also
puts alpha-numerical characters, that appear on the corners
of the input images, on the scene. When (12 (a)) masks are
used, neither the dust cloud, nor the characters are built on
the reconstructed scene.

(a) (b)

Figure 12: (a) Output of Agisoft Metashape after
processing a sequence of images with masks; (b)Output of
Agisoft Metashape after processing a sequence of images

without masks, in this case we can see the algorithm
reconstructs a dust cloud.

5.2.2 Online SLAM: ORB-SLAM

On the scope of online SLAM, ORB-SLAM was ran on a
sequence of 1000 images. To evaluate the impact of using
masks, the images and their respective masks were over-
layed so that only the foreground was visible and every-
thing else was ’deleted’, by making every non-foreground
pixel black, see figure 13 (a).

(a) (b)

Figure 13: Frame with features extracted by ORB-SLAM
(a) with mask; (b) without mask.

On a more quantitative analysis, let us consider the tra-
jectory’s jerk, which is a physics concept that amounts to
the rate at which an object’s acceleration changes over time.
It is denoted by j and its units are m/s3. It is usually ex-
pressed as a vector, being the first derivative of acceleration.
It can also be expressed as a third derivative of position or a
second derivative of velocity.

j(t) =
d3r(t)

dt3
=
d2v(t)

dt2
=
da(t)

dt
(21)

Since ORB-SLAM outputs, for every keyframe, the coordi-
nates of the camera’s optical center, in respect to the world’s
coordinate system, jerk will be a 3-dimensional vector at
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any given point in time.

j(t) =

(
d3x(t)

dt3
;
d3y(t)

dt3
;
d3z(t)

dt3

)
(22)

Besides the coordinates output, ORB-SLAM also provides
the timestamps of those keyframes. This allows us to com-
pute these derivatives through finite differences.

r′′′(t0) =
− 1

2r(t−2) + r(t−1)− r(t+1) +
1
2r(t+2)

h3
t

(23)

where ht is the time difference between each finite differ-
ence interval.

In robotics, a low jerk means the trajectory is smooth. In
terms of the robot’s control system, a smoother trajectory
allows for less complex and more robust performance. Fig-
ure 14 and table 4 establish a comparison between the tra-
jectory’s jerk using masks and without masks. For a more
accurate analysis, it should be noted that when running with
segmentation masks, ORB-SLAM takes more time to ini-
tialize, since it detects less features per frame. However, it
is able to find the same amount of keyframes (21) in a much
smaller period. The results on table 4 were computed by
calculating the average of all jerks’ norms. When running
with masks, the jerk is approximately 12 times better than
without masks.

(a) (b)

Figure 14: Trajectory’s jerk (a) with mask; (b) without
mask.

With Mask Without Mask
0.021 0.258

Table 4: Average of jerk norms.

6. Conclusions
The purpose of this work was to study the impact of

introducing AI-based semantic segmentation tools on the
performance of SLAM algorithms, for posterior integration
in autonomous underwater vehicles. An annotated dataset,
with 1200 pairs of images and masks, was created to train
a neural network to perform semantic segmentation and the

results were tested on both online and offline SLAM algo-
rithms.

To develop the dataset, images were enhanced to im-
prove feature detection. Also, a tool was developed to yield
an initial estimate of segmentation mask, using Sobel-based
edge detection, which were hand corrected afterwards to
create the segmentation ground truth for each image.

The chosen deep learning model for semantic segmen-
tation was a Fully Convolutional Network, that was trained
several times with different hyperparameters. With the net-
work that yielded the best results, at around 93% accuracy,
a sequence of frames was ran through the model to have
masks to test on the SLAM algorithms.

The results were tested on offline SLAM, using Agisoft
Metashape Standard (Version 1.7.2)(Software) and on on-
line SLAM, with ORB-SLAM. On both cases the proposed
methodology improved the quality of the results.

Future work should include the development of a larger
and more diverse dataset and using it to train a Fully Con-
volutional Network, so the model can cope with conditions
different from those of the proposed dataset. Also, for fur-
ther validation, this methodology should be tested using an
underwater autonomous vehicle on the context of real time
ocean exploration.
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